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EXECUTIVE SUMMARY 

This project investigated the factors impacting individual vehicle energy consumption, including 
vehicle characteristics, ambient temperature, season, speed, driving behavior, and traffic flow. A 
fleet of 18 vehicles with a variety of ownership, size, model, year, and powertrain characteristics 
was monitored by on-board diagnostics II (OBD-II) loggers to collect each vehicle’s controller 
area network (CAN) bus data for a one-year period. Traffic data were collected using side-fired 
radar sensors and linked with the vehicle data. Relationships between vehicles’ miles per gallon 
(MPG) and various factors were established using statistical analyses. In addition, using data 
collected from each vehicle’s CAN bus, Virginia Tech microscopic energy and emission (VT-
Micro) fuel consumption models for gasoline vehicles were calibrated, and a new electricity 
consumption model was proposed for battery electric vehicles (BEVs) that considers vehicle 
specific power (VSP) and temperature .  

The key findings of this project are as follows: 

1. The MPG of gasoline vehicles varies greatly by model, year, and engine technology. As 
expected, compacts and sedans are more fuel efficient than SUVs and pickup trucks. Electric 
vehicles have a much higher MPG equivalent (MPGeq) than gasoline vehicles.  

2. Ambient temperature has a significant impact on fuel economy. Vehicle MPG declines in 
cold temperatures and increases in warm temperatures. The optimal ambient temperature for 
vehicle energy efficiency is 60°F to 70°F. In hot weather (above 70°F), the use of air 
conditioning reduces vehicle energy efficiency.  

3. Three different relationships between trip average speed and MPG were observed. In general, 
vehicles consume more fuel at low speeds. For each vehicle, there is an optimal speed range 
that achieves the best fuel economy.  

4. For gasoline vehicles, quiet driving behaviors featuring less variation in speeds, less hard 
acceleration, and less hard braking consume less fuel than aggressive driving behaviors. 
However, the electricity consumption of electric vehicles is lowest when 30% to 40% of 
braking events in a trip involve hard braking, due to regenerative braking.  

5. By matching vehicle MPG data with Wavetronix traffic data, it was observed that when 
traffic density is over 26 veh/h/ln, gasoline vehicles’ MPG decreases by 8% to 27% and 
electric vehicles’ MPGeq decreases by 10%.  

6. The calibrated VT-Micro fuel consumption models for gasoline vehicles and the proposed 
power-based electricity consumption models for BEVs can reliably estimate vehicle energy 
consumption. 
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INTRODUCTION 

Ambient temperature, congestion, traffic signal progression, and driving style affect vehicles’ 
emissions and fuel economy. To investigate the effects of various factors on fuel consumption, 
10 Iowa State University rental vehicles and 8 private vehicles, with a variety of sizes, models, 
years, and powertrain types, were monitored for one year using on-board diagnostics II (OBD-II) 
loggers. The OBD-II loggers, linked to GPS trackers, were plugged into each vehicle’s controller 
area network (CAN) bus and recorded vehicle location, speed, ambient temperature, and energy 
consumption rate.  

Vehicle CAN bus data collected by OBD-II loggers have been used in many fuel economy 
studies. Typical parameters that are read by OBD-II loggers from gasoline vehicles are 
instantaneous speed, engine revolutions, throttle position, mass air flow (MAF), manifold 
absolute pressure (MAP), intake air temperature (AIT), absolute load, corrected air to fuel ratio 
(AFR), etc. Using these parameters, the actual fuel consumption can be obtained. Lee et al. 
(2011) developed a regression model that reveals the impacts of engine revolutions per minute 
and throttle position on vehicle fuel consumption. Bifulco et al. (2015) estimated vehicle fuel 
consumption based on vehicle speed, acceleration, throttle position, and intake air. Ribeiro et al. 
(2013) developed polynomial models using instantaneous fuel consumption as the dependent 
variable and speed and acceleration as independent variables. Meseguer et al. (2015) classified 
drivers into three groups (quiet, normal, and aggressive) based on CAN bus data and studied the 
impact of driving behavior on fuel economy.  

Furthermore, because vehicle speed and acceleration data can be collected by various devices, 
such as OBD-II loggers, on-board trackers, and smartphones, instantaneous speed and 
acceleration are widely used as predictors to estimate vehicle fuel consumption (Ahn et al. 2002, 
Kamal et al. 2011, Rakha et al. 2004). Road inclination, as an extra variable, was considered 
along with speed and acceleration in the fuel consumption models developed by Ribeiro et al. 
(2013). In addition, some power-based models (Park et al. 2013, Rakha et al. 2011) first calculate 
instantaneous engine power based on speed and acceleration and then estimate fuel consumption.  

OBD-II loggers can also be used to collected data from the CAN bus of battery electric vehicles 
(BEV) and plug-in hybrid electric vehicles (PHEV) (Zhou et al. 2016) by reading the battery’s 
state of charge (SOC), current, and voltage. Duarte et al. (2014) studied the impacts of battery 
SOC on the energy consumption and gaseous pollutant emissions of PHEVs and concluded that 
SOC levels significantly impact energy use and tailpipe emissions under low power 
requirements. Several electricity consumption models for BEVs considering various impacting 
factors have been proposed in the literature. Yao et al. (2014) developed a BEV energy 
consumption model similar to the Virginia Tech microscopic energy and emission (VT-Micro) 
model that takes speed and acceleration as input. In subsequent work, the authors further 
improved the model by taking SOC into account because electricity consumption rate was found 
to be negatively correlated with SOC based on the data they collected (Zhang and Yao 2015). 
Wang et al. (2017) found that ambient temperature significantly impacts the energy efficiency of 
electric vehicles (EVs) and fitted a third-order polynomial regression model in terms of 
temperature to estimate energy usage. Liu et al. (2017) used vehicle probe and road gradient data 
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to show that the impact of road gradient on EV electricity consumption increases almost linearly 
with increasing absolute gradient. Another important factor impacting electricity consumption is 
vehicle specific power (VSP), which can be calculated using vehicle speed and acceleration. One 
of the advantages of the power-based models is the consideration of regenerative braking of 
electric motors. For example, Alves et al. (2016) established regression relationships between 
VSP and BEV energy consumption based on levels of VSP, and Fiori et al. (2016) estimated EV 
energy consumption by modeling the energy efficiency of instantaneous regenerative braking as 
a function of deceleration levels. 

This project investigated the relationships between individual vehicle fuel consumption and 
vehicle characteristics, ambient temperature, season, trip average speed, driving styles, and other 
factors. Previous studies showed that vehicle energy consumption increases considerably under 
traffic congestion for both gasoline vehicles (Feng et al. 2014) and electric vehicles (Xiao et al. 
2016). In order to study the impacts of macroscopic traffic measurements on vehicle fuel 
consumption, vehicle CAN bus data were combined with traffic data collected by Wavetronix 
detectors on highways and freeways. The traffic data include flow rate, space mean speed, and 
density. Fuel consumption under congested traffic conditions was compared with fuel 
consumption under free flow conditions. In addition, using the vehicle speed, acceleration, and 
fuel consumption data collected from CAN buses, existing gasoline vehicle fuel consumption 
models were calibrated for specific vehicles and a new electric vehicle fuel consumption model 
was developed. 

This report is organized as follows. In Data Collection, the process of collecting vehicle CAN 
bus data and traffic data is described. The Data Analysis section explains how data from multiple 
sources were fused and examines different factors influencing the energy consumption of 
gasoline vehicles and electric vehicles, including vehicle type, model, engine displacement, 
ambient temperature, season, trip speed, driving behavior, and macroscopic traffic 
characteristics. In Vehicle Energy Consumption Models, the report describes the development 
and validation of energy consumption models for gasoline vehicles and BEVs. Finally, the 
conclusions are presented.   
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DATA COLLECTION 

Vehicle CAN Bus Data 

OBD-II Data Logger 

The way that vehicle CAN bus data were collected is shown in Figure 1.  

 
Figure 1. Collection of vehicle CAN bus data 

The OBD-II loggers, with GPS tracking modules, were installed in a fleet of 18 passenger 
vehicles (16 gasoline vehicles and 2 electric vehicles) to read data from each vehicle’s CAN bus. 
The data were temporarily stored in a memory card in the logger and then uploaded via cellular 
network to the data service provider, FleetCarma. The background system generated data and 
trip summary files that could be downloaded through a web data portal. The downloaded data 
were stored in a secure data server at Iowa State University. 

Table 1 lists the data fields collected from the gasoline vehicles, including engine revolutions per 
minute, GPS location, vehicle speed, ambient temperature, and fuel consumption parameters. 
The actual fuel consumption rate was calculated using Equation 1. 
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Table 1. CAN bus data for gasoline vehicles 

Data Field Description 
Frequency of  

Collection (sec) 
Timestamp Date and time when data are collected - 
Engine_RPM Engine revolutions per minute (rpm) 5 
GPS_Alt Altitude of vehicle location (m) 15 
GPS_Lat Latitude of vehicle location (°) 15 
GPS_Lon Longitude of vehicle location (°) 15 
GPS_Speed Speed of GPS device (km/h) 15 
GPS_Time Time of GPS device 15 
LTFT Long-term fuel trim parameter (%) 5 
STFT Short-term fuel trim parameter (%) 5 
MAF Mass air flow (g/s) 5 
Outside_Air_Temp Ambient temperature (°C) 5 
Veh_Speed Vehicle speed (km/h) 1 

 

FC=1000×MAF×(1+LTFT)×ρ-1 (1) 

where 
FC is the instantaneous fuel consumption (mL/s) 
MAF is the mass air flow (g/s) 
LTFT is the long-term fuel trim parameter (%) 
ρ is gasoline density (719.7 g/L) 

The data collected from electric vehicles were different than the data collected from internal 
combustion engine vehicles. For battery electric vehicles, the battery SOC, current, and voltage 
were recorded (see Table 2).  

Table 2. CAN bus data for BEVs 

Data Field Description 
Frequency of 

Collection (sec) 
Timestamp Date and time when data are collected - 
GPS_Alt Altitude of vehicle location (m) 60 
GPS_Lat Latitude of vehicle location (°) 60 
GPS_Lon Longitude of vehicle location (°) 60 
GPS_Speed Speed of GPS device (km/h) 60 
GPS_Time Time of GPS device 60 
HVBatt_Current Current of batteries (A) 2 
HVBatt_Voltage Voltage of batteries (V) 2 
HVBatt_SOC State of charge (SOC) of batteries (%) 10 
Outside_Air_Temp Ambient temperature (°C) 5 
Veh_Speed Vehicle speed (km/h) 2 
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The actual electricity consumption rate is calculated using Equation 2. 

EC=I×U (2) 

where  
EC is instantaneous electricity consumption (W) 
U is battery voltage (V) 
I is battery current (A) 

The value of EC could be negative, indicating that electricity was generated and stored in the 
batteries due to the regenerative braking of electric motors.  

Participant Recruiting 

To ensure that the rights and safety of human participants in the study were protected, the 
researchers obtained approval from Institutional Review Board (IRB) at Iowa State University. 
Eighteen drivers of university rental or private vehicles participated in this study. All participants 
were informed of the study’s objectives, collected data, risks, potential benefits, confidentiality, 
and rights. A consent form was signed prior to data collection. Participation in the study was 
voluntary. Participants had the right to leave the study at any time without any penalty or loss of 
benefits to which they were entitled. No driver left the study during the data collection period. 
Data were stored on an encrypted and password-protected data server located in a locked server 
room at the Institute for Transportation, Iowa State University. Only the principal investigator 
and authorized graduate research assistants had access to the data. The identifiable driver 
information was kept separate from the data. 

The fleet from which data were collected consisted of 10 university rental vehicles and 8 private 
vehicles, with a variety of makes, models, years, engine displacements, and powertrain 
characteristics, as listed in Table 3.  
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Table 3. Characteristics of participating vehicles 

No. Make Model Year Engine Type Ownership 
2903 Mazda CX-7 2009 2.3L I4 MFI SUV Private 
3813 Chevrolet Impala 2011 3.5L V6 SFI Sedan University 
3950 Ford Taurus 2015 3.5L V6 SMPI Sedan University 
4347 Chevrolet Silverado 2007 5.3L V8 SFI Pickup truck University 
4358 Ford Taurus 2014 3.5L V6 SMPI Sedan University 
4359 Ford Fusion 2010 3.0L V6 SMPI Sedan University 
4380 Ford Taurus 2014 3.5L V6 SMPI Sedan University 
4385 Chevrolet Impala 2011 3.5L V6 SFI Sedan University 
5017 Chevrolet Equinox 2016 2.4L I4 SIDI SUV University 
5020 Chevrolet Equinox 2016 2.4L I4 SIDI SUV University 
5034 Chevrolet Impala 2016 3.6L V6 SIDI Sedan University 
5118 Honda Civic 2008 1.8L I4 MPI Compact Private 
5158 Honda CR-V 2010 2.4L I4 MPI SUV Private 
5828 Nissan Leaf 2013 80kW electric motor Compact Private 
5956 Pontiac G6 2009 3.5L V6 SFI Sedan Private 
6289 Honda CR-V 2014 2.4L I4 MPI SUV Private 
7306 Buick Regal 2016 2.0L I4 SIDI Sedan Private 
7507 BMW i3 2015 125kW electric motor Compact Private 

 

The university rental vehicles were long-term rentals to ISU employees. Thus, only one driver 
was associated with each vehicle. Among the participating vehicles, the 2013 Nissan Leaf is a 
BEV, and the 2015 BMW i3 is a PHEV. The other vehicles are gasoline powered. The fleet 
included diverse vehicle types: three compacts, nine sedans, five SUVs, and one pickup truck. 

Seven of the private vehicles drove mainly in the Des Moines and Ames areas of Iowa. The other 
private vehicle, 2014 Honda CR-V, primarily drove in Beaumont, Texas. The university rental 
vehicles traveled mostly in the state of Iowa and sometimes traveled to the neighboring states, 
including Illinois, Kansas, Minnesota, Missouri, Nebraska, and Wisconsin. Data collection for 
most vehicles lasted for about one year with varied starting dates, as shown in Figure 2.  
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Figure 2. Period of data collection 

The earliest data collection started in August 2015 for one of the researchers’ personal vehicles 
using a trial data logger. The purpose of this was to try out the data logger and collect 
preliminary data to verify the proposed method. All of the other participants were recruited in 
February 2016 or later after IRB approval.  

Wavetronix Traffic Data 

Iowa DOT has been installing radar detectors manufactured by Wavetronix along Interstates and 
major highways in Iowa to monitor real-time traffic conditions. The detector inventory and GPS 
locations were provided by the Iowa DOT. The Wavetronix detectors count vehicles, detect 
traffic speeds, and calculate occupancy by direction and by lane every 20 seconds (see Figure 3).  

8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9
2903
3813
3950
4347
4358
4359
4380
4385
5017
5020
5034
5118
5158
5956
6289
7306
5828
7507

2015 2016No. 2017



8 

 
Figure 3. Wavetronix detectors collecting traffic data 

The 20-second raw Wavetronix data can be aggregated at 5 min, 15 min, 30 min, 1 h, and 24 h 
intervals. This study used 5 min aggregated traffic data. Table 4 lists the data fields and the 
descriptions of the Wavetronix traffic data. 

Table 4. Description of Wavetronix traffic data 

Data Field Description 
Station Name of Wavetronix detector 
Timestamp Date and time of traffic data 
Interval Time interval of traffic data (5 min in this study) 
Dir Direction of traffic 
Lanes Number of lanes in the direction of traffic 
Cnt Vehicle count during the time interval 
Spd Space mean speed of traffic during the time interval (mph) 
Occ Detector occupancy during the time interval (%) 
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DATA ANALYSIS 

This section explains how the vehicle and traffic data were fused and describes the data analysis 
conducted to determine the factors that influence individual vehicle energy consumption. 

Data Fusion 

Vehicle CAN bus data were matched with Wavetronix traffic data spatially and temporally, as 
shown in Figure 4.  

 
Figure 4. Matching vehicle location data and Wavetronix data spatially and temporally 

First, a vehicle’s GPS location was linked to the nearest Wavetronix detector. The distance 
between the vehicle and the detector needed to be within 5 miles. Second, the timestamp of the 
vehicle location was floor-rounded to nearest 5 min and linked to the Wavetronix traffic data 
with the same timestamp. For example, if a vehicle at 4/3/2017 12:08:30 AM was within 5 miles 
of a detector, the Wavetronix data timestamped at 4/3/2017 12:05:00 AM was matched. 

Factors Influencing Vehicle Energy Consumption 

Vehicle Characteristics 

Based on the vehicle CAN bus data, FleetCarma provided a trip summary that included the travel 
distance and energy consumption of each trip. The vehicle MPG was calculated as the total travel 
distance divided by the total energy consumption during the data collection period. The 
electricity consumption was converted to gasoline gallon equivalent (GGE), where 1 GGE equals 
33.4 kWh of electricity. Therefore, the fuel economy of electric vehicles was indicated by MPG 
equivalent (MPGeq).  

The driver of the 2010 Honda CR-V manually recorded the odometer readings and gallons of 
gasoline filled, based on which the actual MPG was computed. The manually recorded MPG was 
6% to 8% lower than the FleetCarma MPG. One of the reasons for the discrepancy is that the 
OBD-II logger usually starts collecting fuel consumption data 10 to 20 seconds after the engine 
starts. Therefore, the recorded fuel consumption tends to be lower than the actual value. 
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However, this measurement error affected all vehicles and thus did not impact the ranking of 
vehicles in terms of MPG below. 

Figure 5 plots the MPG of all gasoline vehicles in the fleet in descending order.  

 
Figure 5. MPG of gasoline vehicles 

The 2008 Honda Civic had the highest MPG of 38.7. The two Chevrolet Impalas and two Ford 
Tauruses also had efficient fuel consumption, with MPG values higher than 30. The two Honda 
CR-Vs shared the same MPG value, 27.5, and were the most fuel-efficient SUVs in the fleet. The 
2009 Mazda CX-7 and 2007 Chevrolet Silverado had poor fuel economy, especially the 
Silverado pickup truck, which had a low MPG of 18.7. 

As expected, the electric vehicles had much better fuel economy, 125.7 MPGeq for the 2013 
Nissan Leaf BEV and 126.8 MPGeq for the 2015 BMW i3 PHEV, compared to the average 
MPG of the gasoline vehicles in the fleet (27.8), as shown in Figure 6. 
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Figure 6. MPGeq of EVs and comparison with average for gasoline vehicles 

The MPG values of the vehicles in the study were also compared by type (see Figure 7).  

 
Figure 7. MPG by gasoline vehicle type 

Larger vehicle size led to more fuel consumption and lower MPG. Compact vehicles were the 
most fuel efficient. The sedans in this study had an average MPG of 29.2. The fuel economy of 
the SUVs was lower than the average value of 27.8 MPG. The pickup trucks, with the largest 
sizes among the passenger vehicles, consumed the most fuel per mile. 

Figure 8 compares MPG by vehicle model.  
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Figure 8. MPG by gasoline vehicle model 

The MPG of the Honda Civic was almost 40. The Chevrolet Impala, Ford Taurus, and Ford 
Fusion had MPG values of around 30; these are considered fuel-efficient models. The Honda 
CR-V was the best fuel-efficient SUV, a class that includes the Chevrolet Equinox and Mazda 
CX-7. The MPG values of the Buick Regal and Pontiac G6 were close to those of the SUVs. The 
Chevrolet Silverado, not surprisingly, had the lowest MPG. 

Engine displacement also has an impact on vehicle fuel consumption. In general, for the same 
engine technologies, engines with a larger displacement have a higher fuel consumption rate and 
a lower MPG (Essenhigh et al. 1979). However, due to the variety of vehicle years, types, 
models, and engine technologies in the fleet, the results in Figure 9 do not show MPG decreasing 
as engine displacement increases.  
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Figure 9. MPG by gasoline vehicle engine displacement 

The vehicles using 2.3L/2.4L engines were generally older SUVs, while the vehicles using 
3.5L/3.6L engines were sedans of more recent years.  

Ambient Temperature 

Vehicle energy consumption is affected by ambient temperature. Cold temperatures reduce the 
thermal efficiency of internal combustion engines and battery efficiency. The use of air 
conditioners in hot weather increases engine loads and thus reduces fuel economy. The optimal 
temperature range for fuel efficiency was found to be 60°F to 70°F in the US (Greene et al. 
2017). 

To examine the impacts of ambient temperature on the fuel consumption of the gasoline vehicles 
in the fleet, the temperature data collected by the OBD-II loggers were classified into groups at 
intervals of 10°F. The fleet average MPGs for the different temperature groups were calculated. 
The results are shown in Figure 10.  
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Figure 10. Variation in fleet average MPG by ambient temperature for gasoline vehicles 

The average fleet MPG for gasoline vehicles was 22.8 when the ambient temperature dropped 
below 30°F. As the temperature increased, the fleet average MPG increased until it arrived at the 
peak (24.3) between 60°F and 70°F. This finding agrees with Greene et al. (2017). When the 
temperature is above 70°F, engines inject less fuel to warm up, but the use of air conditioners 
increases the engine load and thus leads to more fuel consumption. The fleet MPG dropped to 
only 19.6 when the ambient temperature was above 90°F. 

Ambient temperature had similar impacts on the electricity consumption of electric vehicles, as 
shown in Figure 11.  

 
Figure 11. Variation in MPGeq by ambient temperature for EVs 
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Note that no MPGeq data were collected above 70°F for the Nissan Leaf. Additionally, 60°F to 
70°F is also the optimal temperature range for EV energy efficiency. In cold temperatures, the 
two EVs’ MPGeq values were much lower due to the decline of battery efficiency and the use of 
heaters. The rate at which MPGeq decreased at cold temperatures was larger than the rate at 
which MPG decreased for gasoline vehicles at cold temperatures, which indicates that EV energy 
efficiency is more sensitive to cold temperatures. When the ambient temperature rises above 
70°F, the MPGeq decreases because using air conditioning increases the auxiliary load.  

Season 

Vehicle fuel economy also changes with the seasons. Figure 12 shows the average MPG of the 
gasoline vehicles in Iowa over a one-year period from August 2016 through July 2017.  

 
Figure 12. Fleet average MPG of gasoline vehicles and monthly average temperature over 

one year 

The monthly average temperature of the Des Moines metropolitan area declined from August to 
December/January and then climbed again until July. It can be seen that during the winter 
months, especially in December and January when the average temperatures were the lowest of 
the year, the fleet average MPG was the lowest. The reason is that more gasoline is needed to 
warm up engines during cold weather. In the fall (September to November), when temperatures 
were cool, the fleet was the most fuel efficient, with an average MPG of over 30. The average 
temperature in the spring (March to May) was slightly lower than in the fall, resulting in a lower 
fleet average MPG in the spring than in the fall. Another possible reason for lower MPG in the 
spring is that drivers might have kept using the heaters right after the winter due to habit. The 
fleet average MPG in the summer between June and August was second to that in the fall 
because drivers use air conditioners more often in the summer. 
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The two Honda CR-Vs were driven in Iowa and Beaumont, Texas, respectively. Figure 13 shows 
a comparison of their monthly MPG from February 2017 to July 2017.  

 
Figure 13. Comparison of MPG of two Honda CR-Vs, one in Iowa and one in Texas 

The 2014 Honda CR-V in Texas had a lower MPG in general, which might be because the 
impacts of gasoline thermal efficiency were offset by the frequent use of air conditioning. 

Because data were collected for the two EVs for less than one year, the monthly MPGeq and 
temperatures between November 2016 and July 2017 (with no data from the Nissan Leaf after 
April 2017) are plotted separately in Figure 14.  

 
Figure 14. Comparison of MPGeq of two EVs 
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The energy consumption also changed significantly with the season. MPGeq was the lowest in 
the winter and rose during warmer months. The electricity consumed per mile by the BMW i3 
was the lowest in June 2016 when the monthly average temperature was 75°F. 

Trip Average Speed 

The influence of trip average speed on energy consumption varied by individual vehicle. Figure 
15 presents three scatter plots of trip average speed versus trip MPG, representing three different 
relationships between trip speed and MPG. The blue lines are the LOESS curves fitted between 
the two variables.  
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(a) 2010 Honda CR-V, No, 5158 

 
  (b) 2011 Chevrolet Impala, No. 3813 

 
(c) 2014 Ford Taurus, No. 4380 

Figure 15. Relationships between trip average speed and MPG for gasoline vehicles 

It can be seen from Figure 15(a) that vehicle MPG increased as the trip average speed increased 
until an optimum speed was reached. For the 2010 Honda CR-V (No. 5158), the most fuel-
efficient speed was around 40 mph. After that, vehicle MPG decreased. The gasoline vehicles in 
the fleet that shared similar relationships included the 2010 Ford Fusion (No. 4359) and 2016 
Chevrolet Impala (No. 5034).  

In contrast, MPG did not decrease at high speeds for some vehicles. Figure 15(b) shows that for 
the 2011 Chevrolet Impala (No. 3813), the MPG increased in the speed range of 0 to 50 mph and 
remained almost constant if the trip average speed surpassed 50 mph. The high-speed trips did 
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not consume more fuel than the medium-speed trips. These trends were also found in the 2009 
Mazda CX-7 (No. 2903), 2014 Ford Taurus (No. 4358), 2016 Chevrolet Equinox (No. 5017 and 
No. 5020), and 2014 Honda CR-V (No. 6289). 

Figure 15(c) shows the relationship between trip average speed and MPG for one of the 2014 
Ford Tauruses (No. 4380). The relationship for this vehicle is different than that of the other 
2014 Ford Taurus (No. 4358), which follows a pattern similar to that shown in Figure 15(b). In 
Figure 15(c), MPG continues to increase as trip speed increases. The high-speed trips used more 
fuel than the medium-speed and low-speed trips. Different driving styles and traffic 
environments might have played a role in the distinct speed versus MPG curve. Vehicles having 
similar speed-MPG curves include the 2015 Ford Taurus (No. 3950), 2007 Chevrolet Silverado 
(No. 4347), 2011 Chevrolet Impala (No. 4385), 2009 Pontiac G6 (No. 5956), and 2016 Buick 
Regal (No. 7306). 

Based on the above analysis of the relationship between trip speed and MPG, an optimal speed 
or speed range that achieved the best fuel economy was found for each vehicle, as listed in Table 
5.  

Table 5. Optimal trip speed or speed range for fuel efficiency 

No. 

Optimal Trip Speed  
or Speed Range for  

Fuel Efficiency (mph) 
2903 50~70 
3813 50~70 
3950 65 
4347 65 
4358 50~70 
4359 45 
4380 60 
4385 65 
5017 50~70 
5020 40~60 
5034 50 
5118 40 
5158 40 
5956 65 
6289 50~70 
7306 55 

 

Previous studies have shown that drivers could increase fuel efficiency by 7% to 30% by driving 
at optimal speeds under free-flow traffic conditions (Hooker 1988). 
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For the two electric vehicles, Figure 16 shows that trip MPGeq did not change significantly when 
trip average speed was over 10 mph.  

 
(a) 2013 Nissan Leaf 

 
(b) 2015 BMW i3 

Figure 16. Relationships between trip average speed and MPGeq for electric vehicles 

High-speed trip data for the 2013 Nissan Leaf were not available (no trips were made at 50 to 70 
mph on average), and the majority of trips were at low speeds for the 2015 BMW i3, which 
might result in bias in the conclusions. More vehicle data need to be collected on highways and 
freeways to support the analysis of the relationship between trip speed and MPGeq for electric 
vehicles. 

Driving Behavior 

For each trip, we calculated the ratio of cruising, acceleration, deceleration, and stopping, 
respectively, based on the tracked vehicle speed and acceleration data. Taking the 2010 Honda 
CR-V as an example, Figure 17 plots the trips of this vehicle, with the percentages of 
acceleration and deceleration on the x-axis and the percentages of cruising and stopping on the y-
axis.  
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Figure 17. Impacts of acceleration, deceleration, cruising, and stopping on MPG (2010 

Honda CR-V) 

The trips are colored based on their MPG values. Green trips are fuel-efficient trips whose MPG 
values are above the average MPG of 27.5 for all vehicles, while the red trips’ MPG values are 
below the average. This plot clearly shows the difference between trips with above average or 
below average fuel efficiency. The green, fuel-efficient trips are clustered at the lower-left or 
upper-left corner of each subplot, indicating that driving with less variation in speed (less 
acceleration, deceleration, and stopping and more cruising) can save fuel. 

The percentages of hard acceleration and hard deceleration are used to describe driving 
behaviors, either quiet or aggressive. FleetCarma suggests that acceleration above the range of  
-1.7 to 1.7 m/s2 can be considered hard. The percentage of hard acceleration/deceleration is the 
number of hard acceleration/deceleration events divided by all acceleration/deceleration events 
in a trip. The impacts of the percentages of hard acceleration and hard deceleration during the 
trips on the fleet average MPG are illustrated in Figure 18.  



22 

 
Figure 18. Impacts of hard acceleration and hard deceleration on fleet MPG 

It can be seen that more aggressive driving behaviors (i.e., higher percentages of hard 
accelerations and hard decelerations) decrease the fleet MPG. When over half of 
acceleration/deceleration events are hard, the fleet average MPG drops below 16, which is 
almost 40% less than the MPG for quiet driving (i.e., when less than 10% of 
acceleration/deceleration events are hard). Drivers who want to improve MPG should avoid hard 
acceleration and deceleration as much as possible. 

However, the electricity consumption of electric vehicles is not significantly influenced by the 
split of acceleration, deceleration, cruising, and stopping, as seen in the scatter plots in Figure 19.  
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Figure 19. Impacts of acceleration, deceleration, cruising, and stopping on MPGeq (2013 

Nissan Leaf) 

The green trips (above average electricity efficiency) and red trips (below average electricity 
efficiency) do not have an evident boundary of separation. This is likely due to the regenerative 
braking feature of electric vehicles. Figure 20 further demonstrates the impacts of braking on the 
EVs’ MPGeq. In contrast to gasoline vehicles, the EVs’ electricity consumption is the lowest 
when 30% to 40% of deceleration events during the trips are hard. 
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Figure 20. Impacts of hard deceleration on MPGeq of EVs 

Macroscopic Traffic Characteristics 

To analyze the impacts of macroscopic traffic characteristics on vehicle MPG, the vehicle energy 
consumption data were linked with Wavetronix traffic data. We calculated a vehicle’s MPG in 
the minute after the vehicle’s location matched a detector. The macroscopic traffic characteristics 
included flow rate, speed, and density. Note that this study used 5 min aggregated vehicle count 
data. Therefore, the corresponding hourly flow rate was calculated by multiplying the 5 min 
count by 12. Traffic density is not directly measured by the Wavetronix detectors but was 
computed using Equation 3. 

Q=S×D (3) 

where  
Q is traffic flow rate (veh/h/ln) 
S is space mean speed of traffic stream (mi/h) 
D is density (veh/mi/ln) 

Using the 2011 Chevrolet Impala (No. 4385) as an example, a speed-flow scatter plot is 
illustrated in Figure 21.  
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Figure 21. Speed-flow scatter plot for 2011 Chevrolet Impala (No. 4385) on freeways 

In most cases, this vehicle was driven at high speeds and in low to moderate traffic on freeways. 
Freeway traffic starts to slow down with increasing flows when density exceeds 26 pc/mi/ln 
(TRB 2010). In this study, traffic with a density above 26 veh/mi/ln was considered congested. 

Vehicle MPG decreased by different amounts for different vehicles under congestion. Figure 22 
compares the MPG of nine gasoline vehicles in congested and non-congested traffic conditions 
and illustrates the extent to which MPG decreases under congestion for each vehicle.  

 
Figure 22. Decrease in vehicle MPG under congestion 
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The most significant decline in MPG was for the 2011 Chevrolet Impala (No. 3813), whose 
MPG decreased by 27%. The fuel consumption rates of the 2011 Chevrolet Impala (No. 4385), 
2016 Chevrolet Equinox (No. 5017), and 2016 Chevrolet Equinox (No. 5020) were also sensitive 
to congestion, dropping by about 20% in high-density traffic. The 2016 Buick Regal’s MPG 
decreased moderately by 15%, while the decrease in MPG of the other vehicles was within 8% to 
11%. 

The electricity consumption rates of electric vehicles under congested and uncongested 
conditions were also studied. Figure 23 compares the MPGeq values of the 2013 Nissan Leaf 
under different traffic conditions. The average MPGeq was 116.5 in uncongested traffic but 
decreased by 10% when traffic density was above 26 veh/mi/ln. 

 
Figure 23. MPGeq of 2013 Nissan Leaf under non-congestion and congestion   
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VEHICLE ENERGY CONSUMPTION MODELS 

Fuel Consumption Model for Gasoline Vehicles 

This study adopted the VT-Micro model proposed by Ahn et al. (2002) to estimate the vehicle 
fuel consumption of gasoline vehicles. VT-Micro is a hybrid linear regression model that 
includes a combination of linear, quadratic, and cubic speed and acceleration terms, as shown in 
Equations 4 and 5. 

ln𝐹𝐹𝐹𝐹 = ∑ ∑ 𝐿𝐿𝑖𝑖,𝑗𝑗𝑣𝑣𝑖𝑖𝑎𝑎𝑗𝑗3
𝑗𝑗=0

3
𝑖𝑖=0    (𝑎𝑎 ≥ 0) (4) 

ln𝐹𝐹𝐹𝐹 = ∑ ∑ 𝑀𝑀𝑖𝑖,𝑗𝑗𝑣𝑣𝑖𝑖𝑎𝑎𝑗𝑗3
𝑗𝑗=0

3
𝑖𝑖=0    (𝑎𝑎 < 0) (5) 

where 
v is vehicle speed (m/s) 
a is vehicle acceleration (m/s2) 
Li,j are regression parameters for a ≥ 0 
Mi,j are regression parameters for a < 0 

For each gasoline vehicle in the fleet, we used the actual fuel consumption, vehicle speed, and 
acceleration data to calibrate the VT-Micro model with regression parameters specific to that 
vehicle. Taking the 2010 Honda CR-V as an example, the adjusted R2 of the calibrated model 
was found to be 0.8245 if a ≥ 0 and 0.6616 if a < 0. The regression parameters are listed in 
Tables 6 and 7. 

Table 6. Parameters of the calibrated VT-Micro model for a ≥ 0 (2010 Honda CR-V) 

a ≥ 0 Constant v v
2
 v

3
 

Constant -1.23E+00 6.05E-02 3.62E-04 -2.22E-06 
a 4.69E-01 3.39E-01 -1.91E-02 2.56E-04 
a

2
 -4.54E-02 -1.33E-01 7.45E-03 -5.44E-05 

a
3
 1.34E-02 2.08E-02 -2.01E-03 3.19E-05 

 

Table 7. Parameters of the calibrated VT-Micro model for a < 0 (2010 Honda CR-V) 

a < 0 Constant v v
2
 v

3
 

Constant -7.89E-01 -2.14E-02 5.61E-03 -9.16E-05 
a 2.83E-01 -1.02E-01 2.01E-02 -4.43E-04 
a

2
 1.39E-01 -7.45E-02 1.40E-02 -3.44E-04 

a
3
 9.13E-03 -9.58E-03 2.16E-03 -5.77E-05 
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To evaluate the accuracy of the calibrated VT-Micro model, we compared the actual trip-level 
fuel consumption with the estimates from the regression model for the same trip. As shown in 
Figure 24, the dots are mostly distributed along the diagonal line. Therefore, the calibrated VT-
Micro model can reliably estimate trip-level vehicle fuel consumption. 

 
Figure 24. Validation of fuel consumption model for gasoline vehicles (2010 Honda CR-V) 

Electricity Consumption Model for BEVs 

This study proposes a power-based BEV electricity consumption model that considers VSP and 
ambient temperature. The data used to calibrate the model were collected from the 2013 Nissan 
Leaf. The model is a hybrid linear regression model, as follows. 

EC=b0+b1VSP +b2Paux (6) 

VSP=v(1.1a+Crr)+Caerov3 (7) 

lnPaux=c0+c1T (8) 

where 
VSP is vehicle specific power (W/kg) 
Paux is vehicle auxiliary load (W) 
Crr is rolling resistance coefficient (N/kg) 
Caero is aerodynamics drag coefficient (N s2/m2 kg) 
T is ambient temperature (°C) 
b0, b1, b2, c0, c1 are model parameters 
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For the 2013 Nissan Leaf, Crr equals 0.0981 N/kg and Caero equals 0.0002 N s2/m2 kg. The model 
parameters were calibrated based on the VSP levels (>0, =0, or <0) and the instantaneous speed 
levels (≥12.5 m/s, or <12.5 m/s) because electricity consumption is heterogeneous under 
different VSP levels combined with speed levels. The regression parameters are listed in Table 8. 

Table 8. Parameters of the electricity consumption model for the 2013 Nissan Leaf BEV 

VSP v b0 b1 b2 c0 c1 

>0 <12.5 3.22E+03 1.16E+03 2.15E+00 

-8.94E-02 6.71E+00 

≥12.5 8.43E+03 7.57E+02 2.60E+00 

=0 <12.5 6.10E+02 — 1.19E+00 
≥12.5 — — — 

<0 <12.5 7.20E+02 5.58E+02 2.10E+00 
≥12.5 8.12E+03 5.94E+02 2.57E+00 

 

To evaluate the accuracy of the electricity consumption model, we compared the actual trip-level 
electricity consumption of the 2013 Nissan Leaf BEV with the estimates from the model for the 
same trip. Figure 25 shows that the dots are mostly distributed along the diagonal line. Therefore, 
the proposed energy consumption model is appropriate for estimating the electricity consumption 
of BEVs. 

 
Figure 25. Validation of electricity consumption model for BEVs (2013 Nissan Leaf)  



30 

CONCLUSIONS 

A fleet of 18 vehicles with a variety of ownership, size, model, year, and powertrain 
characteristics was monitored by OBD-II loggers for a one-year period. Wavetronix traffic data 
were also used and were linked with the vehicles’ CAN bus data. By conducting statistical 
analyses, this project studied the factors impacting individual vehicle energy consumption, such 
as vehicle characteristics, ambient temperature, season, trip average speed, driving behavior, and 
macroscopic traffic characteristics. Based on vehicle CAN bus data, VT-Micro fuel consumption 
models for gasoline vehicles were calibrated, and a new electricity consumption model was 
proposed for BEVs that takes advantage of VSP and temperature.  

The key findings of this project are as follows: 

1. The MPG of gasoline vehicles varies greatly by model, year, and engine technology. As 
expected, compacts and sedans are more fuel efficient than SUVs and pickup trucks. Electric 
vehicles have a much higher MPG equivalent (MPGeq) than gasoline vehicles. 

2. Ambient temperature has a significant impact on fuel economy. Vehicle MPG declines in 
cold temperatures and increases in warm temperatures. The optimal ambient temperature for 
vehicle energy efficiency is 60°F to 70°F. In hot weather (above 70°F), the use of air 
conditioning reduces vehicle energy efficiency. 

3. Three different relationships between trip average speed and MPG were observed. In general, 
vehicles consume more fuel at low speeds. For each vehicle, there is an optimal speed range 
that achieves the best fuel economy. 

4. For gasoline vehicles, quiet driving behaviors featuring less variation in speeds, less hard 
acceleration, and less hard braking consume less fuel than aggressive driving behaviors. 
However, the electricity consumption of electric vehicles is lowest when 30% to 40% of 
braking events in a trip involve hard braking, due to regenerative braking. 

5. By matching vehicle MPG data with Wavetronix traffic data, it was observed that when 
traffic density is over 26 veh/h/ln, gasoline vehicles’ MPG decreases by 8% to 27%, and 
electric vehicles’ MPGeq decreases by 10%. 

6. The calibrated VT-Micro fuel consumption models for gasoline vehicles and the proposed 
power-based electricity consumption models for BEVs can reliably estimate vehicle energy 
consumption. 
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